
ORIGINAL RESEARCH
published: 11 June 2019

doi: 10.3389/fimmu.2019.01315

Frontiers in Immunology | www.frontiersin.org 1 June 2019 | Volume 10 | Article 1315

Edited by:

Helen Marie McGuire,

University of Sydney, Australia

Reviewed by:

Cara Haymaker,

University of Texas MD Anderson

Cancer Center, United States

Graham Robert Leggatt,

University of Queensland, Australia

*Correspondence:

Adeeb H. Rahman

adeeb.rahman@mssm.edu

Specialty section:

This article was submitted to

Cancer Immunity and Immunotherapy,

a section of the journal

Frontiers in Immunology

Received: 04 March 2019

Accepted: 23 May 2019

Published: 11 June 2019

Citation:

Amir ED, Lee B, Badoual P, Gordon

M, Guo XV, Merad M and Rahman AH

(2019) Development of a

Comprehensive Antibody Staining

Database Using a Standardized

Analytics Pipeline.

Front. Immunol. 10:1315.

doi: 10.3389/fimmu.2019.01315

Development of a Comprehensive
Antibody Staining Database Using a
Standardized Analytics Pipeline
El-ad David Amir 1, Brian Lee 2, Paul Badoual 2,3, Martin Gordon 1, Xinzheng V. Guo 2,

Miriam Merad 2,3 and Adeeb H. Rahman 2,4*

1 Astrolabe Diagnostics, Inc., Fort Lee, NJ, United States, 2Human Immune Monitoring Center, Icahn School of Medicine at

Mount Sinai, New York, NY, United States, 3Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai,

New York, NY, United States, 4Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New

York, NY, United States

Large-scale immune monitoring experiments (such as clinical trials) are a promising

direction for biomarker discovery and responder stratification in immunotherapy. Mass

cytometry is one of the tools in the immune monitoring arsenal. We propose a

standardized workflow for the acquisition and analysis of large-scale mass cytometry

experiments. The workflow includes two-tiered barcoding, a broad lyophilized panel, and

the incorporation of a fully automated, cloud-based analysis platform. We applied the

workflow to a large antibody staining screen using the LEGENDScreen kit, resulting in

single-cell data for 350 antibodies over 71 profiling subsets. The screen recapitulates

many known trends in the immune system and reveals potential markers for delineating

MAIT cells. Additionally, we examine the effect of fixation on staining intensity and identify

several markers where fixation leads to either gain or loss of signal. The standardized

workflow can be seamlessly integrated into existing trials. Finally, the antibody staining

data set is available as an online resource for researchers who are designing mass

cytometry experiments in suspension and tissue.

Keywords: immune monitoring, mass cytometry, bioinformatics, systems biology, screen, stratification,

experiment design

INTRODUCTION

Immune monitoring (IM) is a systems biology approach for the quantitative evaluation of the
state of the immune system (1, 2). Changes in hematopoietic cell subset composition and in the
cytokines and other proteins these cells produce can indicate the nature and severity of the stress
the body is confronting. These immune correlates establishmeasurable proxies to the hidden details
of disease or the effects of treatment, and are promising to become a central component of clinical
research (3). Mass cytometry, which can measure over forty parameters per single cell (4, 5), has
potential applications for IM in a wide variety of contexts, including cancer (6), allergy (7, 8),
infectious diseases (9–12), trauma (13), organ transplantation (14, 15) and neonatal development
(16). Furthermore, there is growing interest in incorporating mass cytometry into large studies
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such as clinical trials through the Cancer Immune Monitoring
and Analysis Centers (CIMAC) and Partnership for Accelerating
Cancer Therapies (PACT) initiatives1.

Any large-scale study will introduce challenges such as sample
quality control, batch effects, and inter-operator variability. There
are a plethora of methods to address potential data quality
issues in mass cytometry. These include the incorporation of
normalization beads into the sample (17), reduction of technical
variability and doublets through multi-sample barcoding (18,
19), measurement of batch effects using spiked-in references (20),
compensation of signal spillover across different masses (21), and
others. However, despite the well-developed ecosystem, there is
no clear standard on how to run a large-scale mass cytometry
study, and researchers are often forced to reinvent the wheel
by designing experiments de novo with no clear guidance on
best practices.

The situation is even more problematic in the computational
biology arena. Numerous mass cytometry analysis methods have
been published. These can be broadly classified into one of
two categories. Clustering algorithms, such as SPADE (22),
PhenoGraph (23), and FlowSOM (24), group cells together
based on marker expression patterns. Dimensionality reduction
algorithms, such as t-SNE (25, 26), embed the single cell data
in a two-dimensional map that can be more easily visualized.
These approaches require the operator to review their output and
label cells based on his or her judgement. Despite the existence
of automatic methods (27), attempts to provide streamlined
analysis workflows (28) and online tools such as Cytobank
(PMID: 24590675), identifying appropriate analysis methods in
large scale IM studies remains a challenge, and many users resort
to manual gating (29), which is time consuming, error prone,
susceptible to operator bias, and not easily scalable.

Finally, the insights gained from mass cytometry ultimately
depend on the antibodies used in a given staining panel, and
as with any other antibody-guided assay, antibody selection is a
central component of mass cytometry experiment design. While
there is some consensus on appropriate markers to identify
major circulating immune subsets (30), much of the potential
of mass cytometry is in its ability to characterize the roles of
less-studied markers (31–33) and, by extension, in identifying
relevant biomarkers for immunotherapy. However, there have
been no systematic studies of the expression of a broad set of
markers across a broad set of cell subsets to help guide antibody
selection in IM studies. This problem is further exacerbated for
studies involving fixed samples, since fixation can alter surface
epitopes and unpredictably change antibody expression patterns
(34). A comprehensive catalog of antibody staining expression
patterns across immune cells would represent a valuable resource
to establish a starting point for marker selection and panel design.

In order to address the above, we developed a streamlined
mass cytometry pipeline that combines a lyophilized antibody
panel, two-tier barcoding, efficient batched sample acquisition
and a novel cloud-based analytics service. We applied this

1https://www.nih.gov/news-events/news-releases/nih-partners-11-leading-

biopharmaceutical-companies-accelerate-development-new-cancer-

immunotherapy-strategies-more-patients

efficient sample and data processing pipeline to screen the
expression of 326 antibodies across all major peripheral blood
mononuclear cell (PBMC) subsets from multiple donors on both
fresh and fixed cells. This represents one of the largest mass
cytometry data sets to date, with approximately 63 million events
acquired over a month of operation. The workflow incorporates
multiple mechanisms that address and monitor intra- and
inter-sample variability, quality control, standardization and
automation. The result is a comprehensive antibody staining data
set, which screens marker expression in every major immune
subset on a single-cell level. These antibody expression data
have been made available as an interactive companion website
at https://www.antibodystainingdataset.com. This represents a
powerful resource that allows researchers to quickly identify
potential markers for inclusion in novel mass cytometry studies.
Finally, the overall workflow represents a systematic framework
that can readily by applied for performing IM in large
experiments such as clinical trials.

MATERIALS AND METHODS

Samples and Processing
Peripheral blood mononuclear cells (PBMCs) for the primary
LEGENDScreen experiment were isolated by Ficoll gradient
centrifugation from leukapheresis products derived from 3
independent de-identified donors (New York Blood Center).
Additional validation experiments used blood collected from
consented healthy donors under an existing IRB protocol at the
HIMC. For the primary screen experiment, approximately 120
million cells from each donor were incubated for 20min at 37◦C
in RPMI media containing 10% FBS, 1µM Rh103 to label dead
cells and 50µM IdU to label actively cycling cells. The samples
were then washed, Fc-blocked (FcX, Biolegend) and stained for
30min on ice with a lyophilized core antibody cocktail comprised
of markers to allow identification of all major immune subsets
(Supplementary Table 1). All the antibodies in the core panel
were conjugated in-house using X8 MaxPar conjugation kits
(Fluidigm), and the titrated panel was lyophilized and dispensed
as single test aliquots (Biolyph). The reconstituted panel was
filtered through a 0.1 micron Amicon filter prior to use.

After staining, the samples were then divided into two
aliquots, one of which was fixed with freshly diluted 1.6%
formaldehyde in PBS for 20min, while the other was left
untreated. Each of the 6 samples was then barcoded using
a combinatorial CD45-based barcoding scheme (Figure 1),
allowing the 6 treatments to be combined as a single
sample. This pooled sample of ∼300 million cells was
then evenly distributed across each of the 372 wells of a
LEGENDScreen kit (BioLegend) containing reconstituted PE
antibodies (Supplementary Table 2), and incubated for 30min
on ice. Cells from each well were then washed and fixed
with 1.6% formaldehyde in PBS for 20min. To reduce the
overall number of samples to facilitate subsequent processing
and data acquisition, the samples were washed with barcode
permeabilization buffer (Fluidigm), and sets of 10 wells were
barcoded and pooled using a combinatorial palladium-based
barcoding strategy (Figure 1) (18, 35). The pooled samples
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were then washed and stained with saturating concentrations of
165Ho-conjugated anti-PE antibodies. The samples were then
washed and incubated in freshly diluted 2.4% formaldehyde
containing 0.02% saponin, 125 nM Ir intercalator (Fluidigim)
and 300 nM OsO4 (ACROS Organics) for 30min. The samples
were then washed, frozen in FBS containing 10% DMSO and
stored at−80◦C until acquisition.

Data Acquisition and Initial Data
Processing
Samples were thawed immediately prior to acquisition, washed
once in PBS, once in CAS buffer (Fluidigm) and then
resuspended in CAS buffer containing a 1/20 dilution of EQ
normalization beads (Fluidigm). Following routine instrument
tuning and optimization, the samples were run at an acquisition
rate of <300 events per second on a Helios mass cytometer
(Fluidigm) modified with a wide-bore injector (Fluidigm). Upon
completion of the acquisition, FCS files associated with each
barcoded batch of wells were concatenated and normalized using
the bead-based normalization algorithm in the Fluidigm software
resulting in 38 FCS files.

Mass Cytometry Data Analysis
FCS files were uploaded to the Astrolabe Cytometry Platform
(Astrolabe Diagnostics, Inc.) where transformation, debarcoding,
cleaning, labeling, and unsupervised clustering was done. Data
was transformed using arcsinh with a cofactor of 5 and
the marker intensities presented in the paper are all after
transformation. Batches were debarcoded using the Ek’Balam
algorithm (see below), resulting in 2,232 individual samples
corresponding to one (donor, treatment, antibody) combination.
Data from 12 antibody wells were excluded due insufficient
cell recovery or ambiguous barcoding resulting from a known
pipetting errors during sample preparation, resulting in 2,160
samples. For batches 23, 25, and 34, between 50 and 75% of
events were removed due to loss of stability, as described in the
main text.

The individual samples were then labeled using the Ek’balam
algorithm (Supplementary Table 3). Each cell subset was
clustered using the profiling step in Astrolabe (see below).
For the purpose of the Ek’balam algorithm, gdTCR intensities
were compensated by 1.9% of CD8 intensity due to known
signal spillover due to oxide formation from the 146Nd-CD8
channel being detected in the 162Dy gdTCR channel. Platform
output was downloaded in the form of R Programming
Language RDS files (36) for manual follow-up analysis. Figures
were generated using ggplot (37). To evaluate the quality
of the debarcoding, clustering and annotation in Astrolabe
and to perform independent analyses, a subsets of samples
were processed in parallel using a Matlab based debarcoding
algorithm (19) and uploaded to Cytobank for manual gating of
major immune subsets.

The Ek’Balam Algorithm
Ek’Balam is a hierarchy-based algorithm for labeling cell subsets
which combines the strength of a knowledge-based gating
strategy with unbiased clustering. It receives a user-defined subset

hierarchy which details gating rules such as “Cells which are
CD3+ are T Cells.” Subsets can branch through additional rules,
for example, “T Cells which are CD4+ are CD4+ T Cells.”
The hierarchy is organized into levels which correspond to
parallel steps when gating. For example, the first level could
include “CD3+ are T Cells,” “CD19+ are B Cells,” and “CD33+
are Myeloids.” Ek’Balam then iterates over the levels. At each
iteration, the data is clustered with FlowSOM (24), using only the
markers that appear in the rules of that level. Each cluster is then
labeled according to the rules of that level. Labeling is done by
optimizing theMatthews Correlation Coefficient (MCC) over the
clusters and marker intensity values with a greedy algorithm. The
process continues until all cells are assigned to a label which has
no rules branching out of it. A formal definition of the algorithm
is provided in the supplement.

Cell Subset Profiling
Profiling refers to a variation of unsupervised clustering using the
FlowSOM algorithm. The variant differs from classic FlowSOM
in two significant aspects. One, each cell subset is clustered
separately. This guarantees that the output will not include
biologically irrelevant clusters that combine multiple cell subsets.
Two, the clusters are labeled according to the markers that
differentiate between them the most, according to the MCC. The
labeling makes the output more accessible to the researcher by
providing an initial intuition about the differences between the
clusters. A formal definition of the profiling algorithm is provided
in the supplement.

Relevance Metrics
The following metrics were employed when comparing the
computational debarcoding and labeling results to manual
methods. Metrics were calculated for each class separately, where
class is either a barcode (for debarcoding) or a cell subset (for
labeling). The class was set as the target and all other classes as
not-target. In all cases, the manual method is assumed to be the
correct solution.

TP, FP, TN, and FN are true positive, false positive, true
negative, and false negative, respectively.

Precision is the frequency of correctly classified target events
out of all events classified as target, or TP / (TP+ FP).

Recall is the frequency of correctly classified target events out
of all target events, or TP/(TP+ FN).

The F1 score is the harmonic mean of precision and recall, or

2 ·
Precision · Recall
Precision+ Recall

The Matthews Correlation Coefficient (MCC) is the
correlation coefficient between the computational and manual
classification, or

TP x TN − FP x FN
√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Average Overlap Frequency (AOF)
The average overlap frequency is a metric of staining and
clustering quality of a given marker (38). It assumes that the
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FIGURE 1 | A standardized workflow for mass cytometry experiments and its implementation in generating a comprehensive antibody staining reference. (A) Blood

was acquired from three healthy donors and stained with a lyophilized panel of 21 metal conjugated antibodies to allow identification of major immune cell types. The

samples were split into two treatments, fresh and formaldehyde-fixed. Each donor and treatment pair was barcoded using a combination of two out of four CD45

channels. Samples were divided between the four, 96-well plates of the LEGENDScreen antibody panel. Finally, the antibodies were organized into batches of ten

samples each, which were in turn barcoded using a combination of two out of five palladium channels. (B) The 38 batches were acquired using a Helios instrument

over a period of 5 weeks, leading to approximately 63 million events. (C) Samples were automatically debarcoded and tested for quality control using the Average

Overlap Frequency (AOF), and immune populations were clustered, annotated, analyzed and visualized using the Astrolabe Cytometry Platform.

marker has two modalities, denoted negative and positive. The
AOF is a value between 0 and 1, where 0 is complete separation
between the modalities and 1 is complete overlap, and is
defined as:
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where X− is the values of all events in the negative modality,
X+ is the values of all events in the positive modality, X−

h
is the

negative values that are greater than the 5th percentile of a normal
distribution with a mean and standard deviation of , and X+

l
is

the positive values that are lower than the 95th percentile of the
normal distribution with mean and standard deviation of.

Given a set of samples, we can extend the AOF into a sample
quality score by calculating the Scaled2AOF for each (marker,
sample) pair:

Scaled2AOFm,i = max (
AOFm,i −mean (AOFm)

sd (AOFm)
, 0)2

where m indexes over markers and i indexes over samples, and
then calculating the Quality2AOF for each sample:

Quality2AOFi = sum(Scaled2AOFi)

Percent Positive Events
For each (profiling subset, antibody), the percent of positive
events is the percent of events whose intensity is greater than
the 99th percentile of all events in the Blank LEGENDScreen
well (well A1 in plate 1, see Supplementary Figure 3). This well
does not include any PE-conjugated antibodies, so the intensity
distribution there is a background for anti-PE measurement
using the Helios. In order to assess the potential effect of the
isotype control on the baseline, we calculated an alternative
percent positive based on the 99th percentile of the respective
isotype for each antibody. The correlation between the Blank-
based and the isotype-matched percent positive values was 0.94
and the median different was 1%. Due to this minor difference we
decided to use the same Blank 99th percentile for all antibodies.

RESULTS

Design of an Integrated Pipeline for the
Acquisition and Analysis of Large Immune
Monitoring Experiments
Conducting a large-scale immune monitoring experiment over
a long period of time using mass cytometry raises several
challenges. One, it is imperative to monitor instrument
performance and evaluate sample data quality to identify
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transient fluctuations in instrument performance resulting
in features such as diminished staining for one or more
markers, higher than usual debris or doublet count. Two,
batch effects due to experimental or instrument variation can
be a significant concern. While researchers should always be
aware of how technical sources could lead to variation, this is
especially pertinent when data is gathered and acquired over
weeks or months. Experiment design should therefore include
mechanisms that detect both types of failures and alert the
researcher appropriately. Finally, the role of human operators
should be minimized in order to reduce human-introduced
variability. Decision making should follow a clear protocol or be
entrusted to computational methods.

The antibody expression data set described in this study
integrates multiple techniques to maximize experimental and
technical reproducibility and streamline data acquisition and
analysis (Figure 1). Peripheral blood mononuclear cell (PBMC)
samples from three healthy donors (Figure 1A) were stained
with a 21-marker antibody panel comprised of markers to
unambiguously identify all the major immune compartments:
B Cells, myeloid cells, NK Cells, and T Cells, together with
further granularity for subsets within these compartments (such
as CD16 +/– monocytes or naive vs. transitional B Cells). This
core antibody panel was lyophilized as a single cocktail and the
same batch was used throughout sample acquisition to minimize
experimental variability due to reagent variability or pipetting.
The panel only utilizes a subset of the channels available in mass
cytometry, allowing researchers to incorporate an additional 10–
15 markers to address experiment-specific questions.

Following initial core antibody panel staining, the samples
were split into two groups to evaluate the impact of fixation
on each of the antibody epitopes subsequently evaluated in
this screen. This design also typifies a common experimental
design where a treatment (fixation) is compared to control
(fresh samples). The six patient x treatment combinations were
barcoded and pooled using a live cell-compatible doublet-free
barcoding strategy leveraging CD45 antibodies conjugated to
4 distinct isotopes. This barcode approach streamlines sample
processing and minimizes potential variability due to acquiring
different patients or treatments at different times. The isotopes
used for barcoding were specifically chosen to ensure that
potential spillover due to isotopic impurities or oxide formation
from these barcoding channels would not influence any of the
other antibody channels being measured in this experiment.
Next, the samples were evenly distributed across each of the
372 wells of a LEGENDScreen kit, each of which includes a
PE-conjugated antibody against a distinct epitope. Following
this with a metal-conjugated anti-PE antibody enabled the
measurement of a comprehensive set of surface markers across
all the cell subsets identified by the broad lyophilized panel.
Finally, to streamline data acquisition, sets of 10 wells were
further barcoded and combined using a combinatorial strategy
leveraging five palladium channels.

The resulting 38 batched samples were then acquired using a
Helios mass cytometer (Figure 1B). Acquisition required around
400 h of instrument time over 5 weeks of operation and resulted
in a total of 63 million events. Analyzing such a large amount

of data manually would have been time-consuming and risked
operator-introduced variability. To avoid these two issues, we
employed the standardized Astrolabe Cytometry Platform to
debarcode and clean the data, label cell subsets, and conduct
unsupervised clustering (Figure 3C). The Astrolabe analysis took
24 h, and the platform’s “Analysis” export was employed in all
follow-up analyses.

Debarcoded Sample Data Is Robust and
Consistent Across the Screen Samples
The antibody staining data set involves a high number of
samples, complex experiment design, a long acquisition period,
and advanced computational analysis, any of which could
potentially introduce variability or other artifacts. Several tests
inspect the various stages of the experiment (Figure 2). First
and foremost, accurate debarcoding is critical for all follow-
up analyses. This step is especially challenging due to the two-
tiered barcoding scheme employed: CD45-based barcoding of
patient x treatment and palladium-based barcoding of each
batch of 10 LEGENDScreen antibodies. Astrolabe correctly
identifies all 60 codes and their channel profile are distinct and
follow the expected design (Figure 2A). In order to validate the
computational debarcoding approach, the results were compared
to manually-debarcoded data for one of the batches. The two
methods showed high concordance according to four different
statistical metrics (Figure 2B), supporting the use of the more
efficient computational approach to debarcode all 2,232 samples.

The starting point for the data set was blood from three
healthy donors. After the fixed vs. fresh treatment and the
introduction of the kit’s antibodies, each of these individuals leads
to several hundred different samples. However, the individual
donor immune profile across each set of samples are expected
to be identical and therefore the acquired data should be highly
comparable. This is reflected in the principal component analysis
(PCA) map over the sample cell subset frequencies (Figure 2C).
The samples are distributed across three well-separated islands.
Each island corresponds to one individual, signifying that the
immune profile is consistent throughout acquisition.

We further applied Average Overlap Frequency (AOF)
as a metric to evaluate individual marker staining quality
across all sample batches (38). This QC step identified
issues with staining of multiple markers in three of the
batches (Supplementary Figure 1A). Further inspection
of the score highlighted several problematic markers
(Supplementary Figure 1B). Evaluation of the single-cell
data for one of these markers, CD27, revealed a time-dependent
increase in background staining resulting in reduced marker
resolution over time, which we attribute to a Helios instrument
malfunction during acquisition (Supplementary Figure 1C).
However, restricting analysis to only the events in the first
quarter of acquisition window for these batches resulted in
AOF values within the range of other batches, allowing recovery
of valid antibody screening data despite the technical issues
(Supplementary Figure 1D). The rapid identification, isolation,
and solution of these technical artifacts was facilitated by a
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FIGURE 2 | Subset frequency and marker intensity are consistent across the LEGENDScreen experiment acquisition. (A) Debarcoding heat map for one batch out of

the 38. Rows are debarcoded events, columns are barcoding channels. Tile intensity is median of channel in events. Astrolabe correctly debarcoded all of the codes

(Continued)
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FIGURE 2 | in this batch. (B) Bar plot comparing Astrolabe debarcoding to manual debarcoding using four accuracy scores: Precision (0.996), Recall (0.914), F1

Score (0.953), and Matthews Correlation Coefficient (MCC, 0.943). (C) Scatter plot of Principal Component Analysis (PCA) over the cell subset frequency vectors for

all samples. Axes are first and second components, dots are samples color-coded by donor. The three donors are distinct from each other and internally uniform

across the entire acquisition. (D) For each pair, the top plot is a scatter plot of cell subset frequency across all samples, ordered by batch. The bottom plot is a box

plot of the canonical marker intensity across all batches. From top to bottom: T Cells and CD3 intensity, B Cells and CD19 intensity, NK Cells and CD56 intensity, and

CD14+ Monocytes and CD14 intensity. In all cases, both frequencies and intensities are robust across the acquisition period.

standardized quality control approach using the well-defined
AOF metric.

Except for the batch effects identified by the AOF QC, the
data set was consistent across cell subsets and marker intensities
(Figure 2D). For four major cell subsets (from top to bottom: T
Cells, B Cells, NK Cells, and CD14+ Monocytes), we examined
the frequency in each sample (top panel of each, ordered by
batch). Subset frequency has very small variation across all the
samples of a given donor. Additionally, the distribution of the
canonical marker of each subset (CD3, CD19, CD56, and CD14,
respectively) is also consistent across the samples (bottom panel
of each, one box for each batch).

The combination of the above quality control measures
highlights the overall robustness of the antibody staining data
set. The overall staining data were cohesive for each donor, and
for each cell subset across donors, and specific acquisition issues
were identified and addressed using automated QC metrics.

The Astrolabe Platform Correctly Labels
Cell Subsets and Provides Meaningful
Unsupervised Clustering
The Astrolabe platform automatically labeled canonical immune
cell subsets (Figure 3). As with debarcoding, it is imperative
to verify that automated cell annotation methods correspond
to historical definitions by calculating the overlap with manual
gating. The Matthews Correlation Coefficient (MCC) between
the two methods was >0.8 for almost all of the cell subsets
(Figure 3A). Biaxial plots of canonical markers further reinforced
the overlap (Supplementary Figures 2A–C). Four of the subsets
had a score lower than 0.8, which indicated some discrepancy
between computational labeling and manual gating. In all four
cases, the disagreement was due to subjective thresholding of
a specific marker (Supplementary Figure 2D): these are cases
where the exact marker intensity threshold for a given subset
is ambiguous, such as where to draw the line on CD24 to
distinguish Naive and Transitional B Cells. Importantly, the
automated approach allowed consistent thresholding across all
samples in these ambiguous cases, avoiding potential human
subjectivity and variability in assigning gates across samples.

The marker intensity profiles for each of the subsets labeled
by the platform largely follow the consensus HIPC definitions
[Figure 3B, (30)]. Astrolabe consistently identified 11 T Cell
subsets (including CD4+ and CD8+ T cells, and Naive, EMRA,
EM and CM subsets within each), 6 B Cell subsets, several
myeloid subsets, NK Cell subsets, granulocytes, and NKT Cells.
Examining cell subset frequencies across the three donors
highlighted clear variability in their respective immune profiles
(Figure 3C), which further reinforces the previous PCA results.

The discovery of novel cell subsets defined by previously
unappreciated marker expression patterns is one of the most
exciting promises of high-complexity cytometry such as mass
cytometry. While cell subset labeling follows established trends,
unsupervised clustering has the potential to unearth previously
unknown signals. Astrolabe includes a profiling step, where
each defined cell subset is clustered separately (Figure 3D). The
number of clusters is decided via a heuristic which depends on
the number of cells in each subset and on marker heterogeneity.
In the antibody staining data set, the platform returns 71 profiling
subsets, which are then labeled according to the marker or
markers that provide the greatest separation between them.
Notably, several CD8+ T Cell subsets are broken down based
on CD161, suggesting MAIT-like T Cells (39). Naive B Cells
are differentiated based on IgD, while NK Cells are broken up
according to CD8. Similar to the canonical cell subsets, profiling
subset frequencies vary between the three donors (Figure 3E),
hinting at a wider heterogeneity within the population.

The Antibody Staining Data Set Defines
Expression Patterns of Hundreds of
Surface Markers Across 71 Cell Subsets
With 350 measured antibodies over 71 profiling subsets, the
antibody staining data set is a rich source of information about
expected expression patterns in a healthy immune system. In
order to provide an initial view into the full expression dataset,
we calculated two metrics for each profiling subset and antibody
combination (Figure 4A, Supplementary Figure 3). The first
metric is the median marker intensity, which is most useful in
defining expression of markers that show a unimodal distribution
within a given subset. To better reflect bimodal expression
patterns, or those in which only a subset of cells are positive
for a given marker, we used a blank well that lacked any PE-
primary antibody to establish a baseline for the second metric,
percent positive cells. We set an arbitrary cutoff at the 99th
percentile of the blank well and defined any cell above this value
as positive for the marker. The resulting heat map provides
two separate summary statistics of marker expression over all
profiling subsets.

Focusing on any specific section of the heat map reveals a
plethora of relevant patterns. The top of the map is populated
with well-established markers (Figure 4B) such as CD7, which
is present on all T Cell and NK Cell profiles, and CD11b,
which is most highly expressed by monocytes. This section also
highlights a limitation of the data set with CD5: while this is
generally considered a pan-T cell marker the screen only showed
expression on Naive CD4+ T Cells, and not any other CD4+ T
Cells. This idiosyncratic staining pattern could be due to many

Frontiers in Immunology | www.frontiersin.org 7 June 2019 | Volume 10 | Article 1315

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Amir et al. Comprehensive Antibody Staining Database

FIGURE 3 | Cell subset and profiling subsets using the Astrolabe platform. Cells were clustered using the FlowSOM algorithm and labeled according to canonical

gating hierarchy. (A) Bar plot comparing Astrolabe labeling to manual gating across all cell subsets using the Matthews Correlation Coefficient (MCC). Jade line

corresponds to MCC of 0.9, gray line to MCC of 0.8. Almost all cell subsets have a high MCC, denoting agreement between the automated and manual methods. (B)

Cell subset heat map for one example sample. Rows are cell subsets, columns are channels. Tile intensity is median of channel in subset. (C) Bar plot of mean cell

subset frequencies in each donor. (D) Profiling subset heat map for the same example sample. (E) Bar plot of mean profiling subset frequencies in each donor.
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FIGURE 4 | Summary of LEGENDScreen antibody intensities across all profiling subsets. (A) Heat map of all antibodies across all profiling subsets. Rows are

antibodies, columns are profiling subsets. Tile size is percent positive and intensity is median intensity. The three highlighted sections correspond to (B–D). (B–D)

Larger view of these sections of the main heat map. Sections were chosen to broadly correspond to the top, middle, and bottom of the heat map. (E) Scatter plot

comparing median antibody intensity between the LEGENDScreen experiment and an independent validation experiment using a fourth donor sample that was

processed and acquired separately. X-axis is median intensity in validation, Y-axis is median intensity in LEGENDScreen. Each dot corresponds to one cell subset and

antibody combination (Pearson’s rho is 0.78). (F) Scatter plot comparing percent positive between experiments. Percentages are frequency of markers in each

quadrant (McNemar’s Chi-squared test p-value is lower than 2.2–16).

potential reasons, such as limitations of the LEGENDScreen kit,
antibody clone used, or specifics of the Helios protocol that we
employed. This serves as an important reminder to researchers
who are looking to utilize this resource: as with any other

biological screen, specific signals should be further validated
before being relied upon.

Lower sections of the heat map allow investigation of many
surface markers that appear less frequently in the scientific
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literature (Figure 4C). Notably, the screen reproduces the
expression of CD180 in B Cells (40) and the expression of
CD193 in basophils (41), while revealing new potential patterns
such as the expression of CD181 by granulocytes and basophils.
Additionally, manymarkers are expressed bymyeloid cell subsets
to some degree. It remains to be seen whether this is an artifact
of the experimental technique employed here, or whether there
is a high degree of myeloid cell heterogeneity that still remains
to be defined. This trend continues throughout the heat map
(Figure 4D), as are some more elusive signals, such as CD371,
which has a checkered expression pattern across diverse and
seemingly unrelated profiling subsets.

In order to provide some outside validation for the dataset,
we conducted a second independent LEGENDScreen experiment
using PBMCs from a fourth donor and compared marker
medians (Figure 4E) and percent positive (Figure 4F) between
the two experiments (Supplementary Table 4). The metrics are
correlated between the experiments (Pearson’s rho of 0.78 and
0.73, respectively). For percent positive, 88.2% of markers are
in the bottom left or top right quadrant of the plot, showing
high agreement between the original experiment and validation
experiment (McNemar’s Chi-squared test p-value is lower than
2.2–16). Together, these tests show that the trends seen in this
data set are generalizable. With that said, unlike the main data
set, CD5 is uniformly expressed across all T Cell subsets in
the validation data (Supplemental Figure 4), further reinforcing
the importance of validation of screens. Examining the set of
markers that are distant from the diagonal does not reveal any
clear trends and it is possible that they are a result of donor-
specific differences, technical variation between the experiments,
or random noise.

Several Markers Are Differentially
Expressed Between CD161+ and CD161-
CD8+ T Cells
This comprehensive antibody resource offers opportunities to
identifymarkers to further interrogate or stratify specific immune
cell subsets. As a proof of principle of this approach, we leveraged
the inclusion of CD161 in the core antibody staining panel, a
marker that is highly expressed on mucosal associated invariant
T (MAIT) cells (42). MAIT cells are a subset of T cells that
display innate-like qualities (43), including an invariant TCRα

chain (44) and an inherent capacity to respond to infection (45).
The Astrolabe profiling identified CD161hi and CD161lo subsets
for both Central Memory (CM) CD8+ T Cells and Effector
Memory (EM) CD8+ T Cells (Figure 3D). These profiling
subsets were further explored for differential marker expression
trends (Figure 5). Comparing the percent positive metric for
each antibody and looking for a consensus across all three
donors identified six differentially expressed markers in CM cells
(Figure 5A) and four markers in EM cells (Figure 5B).

Two of these trends overlap between the two cell subsets:
an increase in CD26 and a decrease in CD49d. CD26 has been
previously associated with MAIT cells (46). When examining
anti-PE in the CD26 LEGENDScreen well (Figure 5C), there is
a x4.5-fold increase in intensity on average between CD161- and

FIGURE 5 | Differentially expressed markers between CD161+ and CD161-

CD8+ T Cells. (A,B) Scatter plots showing percent positive of each marker in

different types of CD8+ T Cells. (A) corresponds to Central Memory (CM), (B)

to Effector Memory (EM). X- and Y-axes are percent positive in CD161- and

CD161+ cells, respectively. Each dot corresponds to one marker in one

patient. The red line is linear regression. Markers where absolute standardized

regression residual is >2 for all three donors are colored. (C) Biaxial plots and

box plots of CD26 expression in CM (left) and EM (right) cells. X-axis is CD161,

Y-axis is CD26, each dot is a cell. Cells and boxes are color-codedby

(Continued)
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FIGURE 5 | CD161- (red) and CD161+ (blue). (D) Same for CD192

expression. CD192 levels in monocytes (brown) are provided as reference. (E)

Same for CD183 expression in CM cells. (F) Same for CD57 expression in EM

cells. (G) Multiplexed validation of differentially expressed proteins between

CD161+ and CD161- subsets using an independent PBMC sample. tSNE

map highlighting the distinct high dimensional phenotype of the CD161hi cell

subset (blue). (H) Biaxial plots showing validation of CD26, CD193, CD183,

and CD57 expression in CD161- and CD161+ CD8+ T Cells.

CD161+ CM cells and a x7.2-fold increase on average between
CD161- and CD161+ EM cells. For CD49d (Figure 5D), the
average decrease in intensity is x1.2 and x1.5, respectively, which
is to be expected given the overall low intensity for that marker.

CD192 (CCR2) was differentially expressed between CD161hi
and CD161low CM cells, with a x3.6 average fold increase in
intensity in the CD161hi subset (Figure 5E, left). It was only
differentially expressed for two of the three donors in EM
cells (Figure 5E, right). CD192 is involved in recruitment of
monocytes to inflammatory sites (47), a function that could
potentially be shared by MAIT cells. When examining marker
intensities on a single-cell level, the CD161hi cells are situated
between the CD161low cells and monocytes, and would thus
be classified as CD192mid using standard gating nomenclature.
In addition to these markers that were selectively upregulated
on CD161hi cells, the screen highlighted reduced expression of
CD183 on CD161hi CM cells (Figure 5F) and CD57 on CD161hi
EM cells (Figure 5G).

One of the limitations of this screening approach is that
each of the antibodies is profiled independently, which precludes
co-expression analyses of markers in the screen. To validate
and further explore the co-expression patterns of the markers
identified in the screen, we independently stained a healthy
donor PBMC sample with a panel incorporating several of
the differentially expressed markers identified in the screen
together with Va7.2 TCR to definitively identify MAIT cells
(Supplementary Table 5). tSNE analysis on the gated CD8T
cells revealed that the CD161hi population had a distinct
phenotype in high dimensional space defined by co-expression
of many of the markers identified in the screen (Figure 5H and
Supplementary Figure 5). The differential expression patterns
of CD26, CD192, CD183, and CD57 between the CD161hi
and CD161low largely mirrored those see in the initial screen,
independently validating these results (Figure 5I).

Sample Fixation Leads to Both Loss and
Gain in the Intensity of Specific Markers
Formaldehyde fixation is a useful approach to preserve
cell samples but has been associated with changes in cell
surface epitopes and marker expression profiles [(34, 48),
Supplementary Figure 6]. However, given the prevalence and
importance of fixation in cytometry experiments, there is an
urgent need for a systematic study of the effect of fixation on
marker intensity to better inform marker selection and panel
design in studies involving fixed samples.

The antibody staining data set includes two conditions
for each donor and antibody samples: one stained fresh and
stained following fixation with 1.6% formaldehyde. Two hundred

fifty-five of the LEGENDScreen markers have cells whose
intensity is higher than the blank threshold. For each of these
markers, we calculated the ratio between median expression in
each of the conditions over all cell subsets (Figure 6A). We
arbitrarily set a threshold of 2-fold change as indicative of a
significant intensity shift between the conditions. 173 (68%) of
the markers were below that threshold suggesting that they are
not notably affected by fixation.

Sixty-five of the markers have a 2-fold or more increase in
fixed samples relative to fresh (Figure 6B). In other words, these
markers gained additional signal when the sample was fixed.
This increase in expression can either be an artifact of fixation
or true expression of an antigen that was not detected in the
corresponding fresh sample. While formaldehyde fixation may
be expected to partially comprise the cell membrane, the samples
in this screen were not explicitly treated with any permeabilizing
agents, so we do not anticipate significant exposure of
intracellular antigens. Furthermore, gains in expression were
largely seen across most cell subsets, suggesting that in most cases
these reflect non-specific staining artifacts following fixation. At
the opposite end of the spectrum, 17 markers showed a 2-fold or
more decrease from fresh to fixed and were thus classified as loss
of signal (Figure 6C). Since only an existing signal can diminish,
the lost pattern is specific to certain subsets.

Examining the ratio between the medians enables a broad
survey of all antibodies over all subsets. However, it ignores
the single-cell nature of the data. Closer examination of several
marker intensity distributions reveals that when the ratio is
around zero, the underlying distribution is usually maintained
from fresh to fixed as well (Figure 6D). When marker intensity
is gained, it typically only affects some of the cells within the
subsets, while the low expression persists in others (Figure 6E).
On the other hand, when signal is lost, it appears that fixation
diminishes it completely (Figure 6F). These trends further
reinforce the hypothesis that the signal gained by fixation
is due to the protocol rather than the underlying biology.
In almost all cases, changes in markers expression patterns
showed similar trends across subsets expressing that marker.
One notable expression was CD22, which was found to be
expressed on both B cells and basophils in the fresh samples
using the clone contained in the Legendscreen panel (S-HCL-
1), consistent with previous descriptions of clone-specific CD22
expression on basophils (49, 50). However, fixation resulted in
loss of expression specifically on basophils, but not on B cells
(Figure 6G), reflecting differences in the fixation sensitivity of the
CD22 conformational epitopes that are differentially expressed
between B cells and basophils (51).

The LEGENDScreen kit includes antibodies conjugated to PE
which are then measured by mass cytometry using an anti-PE
secondary. It is possible that the effects of fixation observed here
are not due to effects on the underlying antibody, but rather
due to a more complex interaction that potentially includes the
marker antibody, PE, and anti-PE. We therefore performed a
validation experiment where seven of the gain or loss markers
were incorporated into the mass cytometry panel (Figure 6H).
For the three loss markers, the validation results confirm the
effect we saw in the data set: the same subsets express these
markers, and loss their signal after fixation. On the other hand,
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FIGURE 6 | Comprehensive assessment of the effect of fixation on marker intensity. (A) Box plot showing the ratio between median intensities in the fixed and fresh

samples. X-axis is antibody, ordered by median ratio, Y-axis is log10 of ratio. Each box is one antibody. The gray line corresponds to zero, or equal median intensities.

(B) Heat map of antibodies where signal was gained from fresh to fixed (log 10 of ratio >0.5). Rows are antibodies, columns are cell subsets. Tile intensity is fold

change between fixed and fresh. (C) Heat map of antibodies where signal was lost from fresh to fixed (log 10 ratio lower than −0.5). Tile intensity is fold change

between fresh and fixed. (D) Intensity distributions for two (cell subset, antibody) combinations where median was equal between fresh (in red) and fixed (in cyan).

(Continued)
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FIGURE 6 | X-axis is antibody intensity, Y-axis is density. The dashed line is the 99th quantile of the blank and indicates the background. Values in parenthesis are

log10(Fixed/Fresh) for this marker in this cell subset. (E) Two (cell subset, antibody) combinations where median increased in fixed (gain of signal). (F) Two (cell subset,

antibody) combinations where median decreased in fixed (loss of signal). (G) Left, CD22 antibody in Basophils, where signal was lost. Right, CD22 antibody in B Cells,

where signal remained constant. Fixation effect differed between the subsets. (H) Scatter plot comparing ratio of fixed and fresh between the LEGENDScreen

experiment and a validation experiment where indicated antibodies were part of the mass cytometry panel (not conjugated to anti-PE). X-axis is ratio in validation,

Y-axis is ratio in LEGENDScreen. Each dot is a (cell subset, antibody) combination. Color is antibody, shape is category (gain or loss).

the results for the gain markers were mixed. While one of them
(CXCR3) fully reproduced the screen results, the other two only
lost their signal in some of the cell subsets.

Cytometry experiment design can be a daunting task due to
the high number of variables that needs to be considered. There
are many factors that could influence results in unknown ways,
especially when employing a method such as fixation that has
the potential to perturb the chemistry and kinetics underlying
the assay. This antibody staining data set represents an accessible
resource to identify and anticipate such potential effects.

DISCUSION

We present a standardized workflow for the acquisition
and analysis of large-scale immune monitoring studies using
mass cytometry. The workflow incorporates several established
experimental techniques in order to reduce signal variation
within samples, across samples, and across operators. One,
it utilizes a lyophilized core antibody panel that allows clear
identification of major compartments of the immune system
and provides higher resolution into T Cell, B Cell, and
other subsets. Lyophilization streamlines sample processing
and eliminates the variability inherent in pipetting small
volumes from a large numbers of individual antibody vials.
Two, a two-tiered barcoding scheme assures that all donors
and treatments are acquired together and that samples are
organized into batches. This reduces the technical variation
associated with the instrument and its operation. Three, a fully
automated cloud-based analytics platform (Astrolabe) runs the
same quality control, data cleaning, cell subset labeling, and
unsupervised clustering over the entire data set. Taken together,
the workflow provides a flexible framework that can be easily
adapted to clinical trial immune monitoring or other large-scale
experiments and greatly improve the quality, reproducibility,
robustness and utility of mass cytometry data.

We leveraged this standardized workflow as part of a
comprehensive screen to establish the expression of 350 surface
markers across all major circulating immune subsets at single
cell resolution. Acquisition of the entire expression dataset across
three donors required more than a month of Helios operation
and culminated in over 60 million events; one of the largest single
mass cytometry datasets recorded to date.

Several quality control approaches were included in order to
ensure the accuracy and quality of the antibody staining dataset.
First, we employed a two-tier barcoding approach to minimize
technical variability in performing the screen. The barcoded
samples were deconvolved using an automated debarcoding
approach that was directly compared and shown to perform
comparably to manual debarcoding. Second, we used average

overlap frequency (AOF) as a metric to evaluate the consistency
of individual marker staining quality across all samples, which
allows us to identify and address acquisition batch effects. Third,
we used an automated approach to identify and label cell subsets,
the accuracy of which was validated against manual gating
of each of the analogous subsets, demonstrating high overlap
and consistency between these approaches. Fifth, we performed
the screen using three independent donor blood samples to
allow for an evaluation of the biological reproducibility of
individual marker expression profiles, and each donor presented
a consistent and distinct cell subset profile across the entire
experiment with both the frequencies of the major immune
compartments and the intensities of their canonical markers
showing low variability across the entire acquisition period.
Finally, the reproducibility of the antibody expression profiles
in our primary screen were further validated using a second
independent screen performed using an additional donor. Taken
together, these steps highlight the fidelity of the antibody staining
resource. However, it is still important to note the limitations
of this data set as a high-throughput screen; any findings
require independent follow-up to confirm whether the reported
expression patterns truly reflect hitherto unknown phenotypic
diversity or may reflect specific biological or technical aspects of
this screen. As an illustration of this approach, we used the screen
to identify potential markers to characterize CD161+ MAIT
cells, and then performed an independent experiment where we
incorporated these markers as part of a single CyTOF panel. This
allowed us to both independently validated themarkers identified
the screen and to further explore their co-expression patterns,
confirming that CD161hiMAIT cells can be further characterized
as being CD26hi, CD192hi, CD183low, and CD57low.

In addition to screening marker expression patterns on

fresh cells, we also introduced formaldehyde fixation as a
treatment, thoroughly examining the influence that this standard
perturbation could have on surface marker staining. When
examining the effect of fixation on marker expression patterns,
173 out of 255 expressed markers had no change in their
intensity. Sixty-five gained some signal from fresh to fixed. We
hypothesize that this gain is an artifact of the fixation protocol
rather than a novel biological signal since it was subset agnostic
and only affected some of the cells in each profiling subset.
Seventeen markers lost their existing signal after fixation. In
almost all cases, the loss of signal affected all expressing subsets.
The one exception was CD22, where one expressing subset
(basophils) lost the signal, while another (B Cells) did not. It has
previously been suggested that the CD22 epitope on basophils
is conformationally distinct from that on B cells (51). Our data
provide further evidence suggesting a difference in the fixation
sensitivity of the CD22 epitopes expressed on these two cell types.
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The overall antibody staining data set is a powerful asset
for immunologists seeking to investigate the immune system
through the lens of less-explored markers and develop antibody
panels to focus on specific cell subsets. To maximize the
utility of this versatile qualitative resource, these results are
fully accessible through an interactive website at https://www.
antibodystainingdataset.com. We included two aggregate
statistics for each (marker, subset) combination: median
anti-PE intensity and percent positive cells (which was
calculated based on the background intensity available in
the Blank LEGENDScreen well). In addition to interacting
with the dataset through heat maps, survey aggregate
statistics for their marker(s) and cell subset(s) of choice,
the website allows investigators to delve deeper into the
single-cell resolution and the relevant distributions. Overall,
this dataset represents an accessible and unbiased resource
for assessing potential expression of various markers over
a large range of immune subsets in healthy individuals
and surveying the statistics in the entire data set reveals
intriguing signals for potential expression of less-studied
markers. This study offers a valuable new resource to aid in
the design of high dimensional antibody panels for immune
monitoring studies, and further offers a template for a robust
experimental workflow incorporating several components to
ensure the accuracy and robustness of data generated using mass
cytometry technology.
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